
Research and Application of BFT Algorithms Based
on the Hybrid Fault Model

Qichao Zhang∗†, Zhuyun Qi∗†, Xiaoyou Liu‡, Tao Sun‡, Kai Lei∗†
∗Shenzhen Key Lab for Information Centric Networking & Blockchain Technology (ICNLAB)

†School of Electronics and Computer Engineering, Peking University, Shenzhen, China
‡The Network Information Center, University Town of Shenzhen, Shenzhen, China

Email: qczhang@pku.edu.cn, qizy@pkusz.edu.cn, {liuxy, suntao}@utsz.edu.cn, *:leik@pkusz.edu.cn

Abstract—The recent explosion of interest in blockchain led
to a plethora of researches on consensus algorithms. Compared
with bitcoin-derived consensus mechanisms, Byzantine Fault-
Tolerance (BFT) algorithms are more applicable for consortium
blockchain. However, these algorithms work lies in the foundation
that 3f + 1 nodes are required to tolerate only f faults, which
results in high network traffic and cost. The hybrid fault model
with Trusted Components (TC) assistance is proposed to reduce
the minimum to 2f+1 and improve overall performance. In this
paper, we firstly introduce the basic principles of BFT algorithms
based on the hybrid fault model. Then we analyze different
TC abstractions and implementation scenarios, and express our
own choices. The general framework for BFT algorithms design
choices and the applications of this model in blockchain are also
discussed. Therefore, this paper aims to provide guidance for
reasonable design of efficient BFT algorithms and application of
TC assistance mechanism.

Index Terms—Byzantine Fault-Tolerance, hybrid fault model,
trusted components, blockchain, consensus

I. INTRODUCTION

The blockchain is a decentralized network system, and is

the disruptive technology supporting a suite of cryptocurrency

like Bitcoin [1]. It enables multiple parties without mutual trust

to maintain shared ledgers, and extends smart contracts to au-

tomatic business mode. This innovative distributed computing

paradigm has gained more attention from industries.

In the distributed environment, nodes may crash or violate

the rules for personal benefits. For example, Bitcoin users may

collude to eclipse honest nodes [2], resulting in the possible

occurrence of double spending attacks. These unpredictable

arbitrary faults are called Byzantine faults, and the consensus

algorithm in blockchain is designed to handle such faults and

strictly guarantee the ledger’s consistency. However, Bitcoin-

derived consensus algorithms have many defects in perfor-

mance and scalability, while Byzantine Fault-Tolerance (BFT)

algorithms are more applicable in many real scenarios due

to its feature of voting mechanism, but they still have some

restrictions.

The big restriction is the well-known theorem that BFT

system requires a minimum of 3f + 1 replicas to tolerate

only f Byzantine faults [3]. The multi-stage broadcast of the

BFT algorithms greatly increases network traffic and degrades

performance. In addition, the system needs to make full use

of diversity to avoid the same software bugs or internal errors

[4], which increases hardware/software and management cost.

To reduce cost, improve performance as well as promote

the application of the Byzantine system, researchers have

conducted extensive research. The hybrid fault model is an im-

proved design of the generic Byzantine fault model. It divides

the system into two parts, one is Trusted Component (TC) with

benign faults (i.e., crash failure) occur only, while the other

can behave in a Byzantine way. Since the use of TC limits the

ability of Byzantine replicas to perform deception, the system

can tolerate �N−1
2 � Byzantine replicas, which greatly reduces

system cost and network traffic during algorithm execution.

Futhermore, the latest general-purpose processors have pro-

vided Trusted Execution Environment (TEE) to ensure security

execution of critical application code. The development of

related technologies such as Intel Software Guard Extensions

(SGX) [5] and ARM TrustZone [6] has greatly promoted

the research and application of BFT algorithms based on the

hybrid fault model.

Although there have been a body of research on hybrid fault

models [7]–[15], at present, these studies are mainly focused

on how to design their own algorithms, rather than analyzing

design principles and different implementation choices. This

paper systematically analyzes and discusses the development

and application direction of the BFT algorithms based on the

hybrid fault model, which provides guidance for designing

and selecting suitable mechanisms and implementation archi-

tecture.

The rest of this paper is organized as follows. Section II and

section III briefly describes background and system model;

section IV discusses the classification and comparison of TC

abstractions; section V analyzes different TC implementation

scenarios; section VI discusses general framework for BFT

algorithm design choices; section VII shows the applications

in blockchain; and section VIII concludes this paper.

II. BACKGROUND

A. Byzantine General Problem

The Byzantine General Problem (BGP) [16] can be de-

scribed simply as the following story: there are a few of geo-

graphically separated forces in an empire, among which some

generals are traitors. These traitorous generals can convey

arbitrary decisions to interfere with the rest of generals. The

critical problem they face is that how to reach an agreement

on the attack of enemy army. In essence, BGP is a typical

978-1-5386-4870-4/18/$31.00 ©2018 IEEE

114

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

consensus problem under the general Byzantine model and

is also a crucial issue that must be addressed in blockchain

systems. The system which tolerates Byzantine faults is called

the Byzantine system, in which all loyal generals need to

follow a certain set of protocols to make consistent decisions.

B. State Machine Replication

Depending on whether the requests must be performed in

certain order, BFT techniques can usually be divided into State

Machine Replication (SMR) algorithm and quorum Byzantine

algorithm [17]. Byzantine SMR algorithm, which ensures all

non-faulty replicas to execute requests in the same order by

multiple rounds of mutual negotiation, is a common method

for dealing with Byzantine faults. The BFT SMR algorithm

must guarantee the correctness of the following two attributes

[18]:

Safety: all non-faulty replicas execute the requests in the

same order (i.e., consensus);

Liveness: clients eventually receive replies to their requests.

The SMR algorithm usually includes three sub-protocols:

agreement protocol, checkpoint protocol, and view-change

protocol. The agreement protocol generally adopts the

primary-backup mode to guarantee that all the requests are

committed and executed by correct replicas in a determined

order. The checkpoint protocol is used to periodically clear

log information and synchronize status. Besides, the goal of

the view-change protocol is to replace the current ineffective

primary and to ensure requests that have been executed by

non-faulty replicas cannot be maliciously eliminated.

C. Equivocation

The core threat to safety and liveness in BFT algorithms

is the capacity of equivocation, i.e., the possibility of a

Byzantine server sending inconsistent messages to different

non-faulty servers or clients. For example, a Byzantine server

may attempt to send two different signed messages to different

subsets of servers, which impedes the agreement on request

order among all correct replicas. Assume that the number of

all the replicas and Byzantine replicas in the system is N
and f respectively, f non-faulty replicas may be affected by

equivocation and fail, ultimately N-f replicas must contain a

majority of correct replicas, i.e., N > 3f .

Fig. 1. PBFT normal operation.

Practical Byzantine Fault Tolerance algorithm (PBFT) [19]

is a classical SMR algorithm, it contains at least 3f + 1 total

replicas and 5 phases (two full broadcast phases) in the normal

case operation. As shown in Fig.1, server 4 is a faulty node, in

order to ensure safety and liveness, PBFT specifies that servers

must receive at least 2f + 1 matching legitimate messages

(including themselves) during the prepare and commit phases

to update the corresponding state, while clients must receive

matching legitimate replies from f + 1 different servers to

determine the execution result of the request.

III. SYSTEM MODEL

We assume that a Byzantine system has a group of clients

C = {C0, C1. . .} and N servers S = {S1, S2. . .SN} that

provide BFT services. In the hybrid fault model, the system

needs to satisfy the following conditions:

• Byzantine faults can be arbitrary, but the potential soft-

ware or internal errors should be independent to prevent

possible common-mode attacks;

• The number of Byzantine servers in the system is limited,

and it is stipulated that no more than f ;

• In an asynchronous environment, data packet discarding

and duplication may occur, and the use of retransmission

mechanisms ensures that data packets are eventually

delivered. However, in order to ensure the liveness of

Byzantine system, the system adopts a partial synchro-

nization model to circumvent the FLP impossibility (i.e.,
there is no consensus solution that can completely tol-

erate one or more crash failures in a fully asynchronous

system) result [20], that is, there exists an unknown upper

bound Tdelay for communication and processing delays

of servers.

• Cryptographic techniques are used to ensure the data

integrity, such as digital signatures or Message Authenti-

cation Codes (MAC), and Byzantine nodes cannot break

the standard assumptions that the hash functions are

collision-resistant and the signature cannot be forged.

• The Byzantine system contains a secure TC that cannot

be invaded and held by the adversary, even local admin-

istrators cannot tamper with. Thus, TC provides a TEE

to protect internal code secure execution.

By leveraging secure TC, Byzantine servers cannot equiv-

ocate or their equivocation can be easily detected by other

servers and clients. In fact, the hybrid fault model is more

like a trade-off between the Byzantine and benign fault mod-

els. The limitation of Byzantine servers’ equivocation ability

reduces the number of additional f non-faulty replicas required

in the generic Byzantine model, raising the system’s fault

tolerance up to �N−1
2 �, and a more detailed proof can be

referred to [21].

IV. ABSTRACTIONS OF TRUSTED COMPONENT

TC is a core component to implement the hybrid fault

model, and its implementation logic has different abstractions.

Depending on the functions and internal state, we can dis-

tinguish three main categories of abstractions: the early TC

abstraction, trusted logs, and trusted increment-only counters.

115

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

This section will introduce these abstractions in detail, and

conclude with a comparative analysis.

A. Early Trusted Component Abstraction

The early TC abstraction contains the whole logic responsi-

ble for request atomic multicasts, and the TC is usually uncon-

structed by security hardware. Correia et al. [7], [8] utilized

the hybrid fault model, assuming that the system contains

a privileged distributed component called wormhole. They

designed a specic wormhole called Trusted Timely Computing

Base (TTCB) with three important features: (1) it is assumed

to be secure and cannot be affected by malicious faults, i.e., it

can only fail by crashing; (2) the communication between the

TTCBs is real-time, which circumvents the FLP impossibility

result; (3) it provides a few basic services, including local

authentication service and trusted multicast ordering service.

Since the TTCB is secure, these critical services are reliable

and cannot be affected by malicious faults.

Reiser et al. [9] proposed an efficient proactive recovery

approach based on virtualization, using a hybrid fault model

to reduce the required replicas. In the adopted VM-FIT ar-

chitecture, a small and trusted Domain NV is separated from

Domain 0 to provide atomic broadcast and proactive recovery

services. These services executed in Domain NV are assumed

not be affected by malicious faults. SPARE [10] is a similar

approach, which also utilizes virtualization technology and the

hybrid fault model to improve system resilience and reduce

proactive recovery overhead. Setting f replicas to be passive,

SPARE requires only f+1 active replicas in the fault-free case.

Moreover, its TC abstraction is the same as that of VM-FIT,

which contains all the logic for ordering requests.

B. Trusted Logs

Attested Append-only Memory (A2M) [11] provides an

abstraction of trusted logs. Fig.2 illustrates the structure of

an A2M. Each node in Byzantine systems is required to be

equipped with a TC (i.e., A2M), and this TC contains a

series of trusted, undeniable, ordered logs. Each log has its

own identifier qi, and different trusted logs are responsible

for attesting the specific category of messages generated

during the algorithm. Only the latest log entries are stored

in A2M from the lowest slot (in the position L) to the highest

slot (in the position H), consisting of a sequence of values

XL+j (usually represented by the hash of the message) and

cumulative digests of all log entries up to itself.

A2M provides a rich set of interfaces to support removing

the ability of performing equivocation. A node can add log en-

tries to trusted logs by executing append operation or advance
operation, and get LOOKUP attestations for certain entries

by executing lookup(q, n, z) operation. The LOOKUP at-

testation contains the state of the log entry in the nth slot of

the log q, and only the attestation with ASSIGNED state

can prove that this certain entry is indeed appended to this

log. Since the trusted logs can only be appended and each

log entry is bound to a sequence algorithm instance number,

nodes can confirm that their received messages are the same as

Fig. 2. Structure of an A2M.

long as they receive valid message with matching LOOKUP
attestation.

In [11], the author describes two algorithms based on A2M

logs. A2M-PBFT-E only uses one local trusted log to protect

reply phase of PBFT. Clients have to receive at least 2f + 1
matching execution results and attestations to accept this

result. Therefore, Byzantine nodes cannot equivocate about

different results to clients, which achieves safety without

exceeding 2�N−1
3 � faulty replicas. However, this algorithm

cannot ensure liveness when the number of faulty replicas

exceeds �N−1
3 �. The other algorithm A2M-PBFT-EA uses

five local trusted logs to process different type of algorithm

messages including preprepare/prepare, commit, checkpoint,
viewchange, and newview messages. Since all the messages

are required to be verified by checking their matching A2M

attestations, the equivocation about any type of messages is

prevented, and finally, the system resilience is increased to

�N−1
2 �.

C. Trusted Increment-only Counters

The core problem for SMR is how to make all the correct

replicas get the same order for requests. Therefore, the trusted

service must provide some functions to limit the ability of

Byzantine nodes to declare that different operations are ith
valid operation. Obviously, monotonic counters can be em-

ployed to address this problem. By assigning unique sequence

numbers to each operation, it is ensured that all the valid mes-

sages with the same sequence number are identical, namely

that a Byzantine node cannot send two different messages with

the same count value. Since the assigned sequence numbers

must be unforgeable, this abstraction also contains an encryp-

tion primitive responding for creating signature certificates that

associate the sequence number to the hash of the message.

Therefore, TC needs to provide a certificate-creating interface,

while the verification of certificates can be executed out of

TC if TC uses public keys rather than symmetric keys. As a

result, Byzantine nodes’ equivocation ability is greatly limited

and system resilience is also improved.

This simple abstraction becomes widely used in recent

years. MinBFT [12] is designed based on PBFT and has

fewer algorithm communication phases and lower minimum of

116

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

required replicas. Its TC provides a local service called Unique
Sequential Identifier Generator (USIG) which serves only two

functions for creating and verifying certificates. Futhermore,

the author also extended MinBFT by leveraging speculative

mechanism and proposed a new algorithm MinZyzzyva with

only three algorithm phases. ReBFT [13] is a resource-efficient

algorithm based on MinBFT, which further reduces resource

consumption in the absence of faults without losing the ability

to ensure safety and liveness in the presence of faults. In

addition, Levin et al. [14] proposed a similar TC called TrInc
to combat equivocation in large, distributed systems. TrInc

provides some extra interfaces, including creating and deleting

counters, importing and using symmetric keys, etc. It supports

multiple independent counters to provide richer functions, and

the author also presented how to build A2M using TrInc with

lower complexity.

D. Analysis of Diverse TC Abstractions

As illustrated in Tab.1, we analyze the differences of the

above three abstractions from the aspects of complexity, ver-

satility, and the approaches to deal with equivocation.

TABLE I
COMPARISON OF THE THREE TC ABSTRACTIONS

Complexity Versatility Deal with
equivocation

The early TC
abstraction

High Low Prevention

Trusted logs Medium High Prevention
Trusted increment-

only counters
Low Medium/High Detection

Complexity. The security of TC is more easily to be proved

and guaranteed if the logic inside TC is simple enough. Since

a lot of security hardware that provides trusted computing

service is limited by its own storage capacity, a low-complexity

abstraction can also contribute to the development and deploy-

ment of TC. The early TC abstraction contains all the logic

responsible for atomic broadcasts, so its complexity is high

and the security can be easily compromised. The abstraction of

trusted logs is less complex and more secure than the early TC

abstraction. However, these active logs are part of the A2M’s

state, which might restrict the trusted order service due to the

decreasing available storage capacity. Although A2M provides

truncate function to discard obsolete log entries, opportunities

to truncate the log may be limited by the algorithm. Compared

to A2M, the abstraction of trusted increment-only counters

has lower complexity and less coupling between TC and

distributed algorithms, so it is easier to design and deploy.

Versatility. Versatility depends on the functionality and

extensibility provided by the TC abstractions. The early TC

abstraction is more biased towards customization, such as the

execution of crucial code written in the kernel, so its versa-

tility is poor. A2M provides more functions to support high

versatility, while the counter-based abstraction provides fewer

interfaces than A2M, but it can utilize multiple counters to

improve versatility and support a wider range of applications.

Approaches. Approaches to deal with equivocation can be

divided into prevention and detection. Preventing equivocation

can further restrict malicious behavior and simplify algorithm

design. Since the early TC abstraction contains the whole

logic for ordering requests and TC is assumed to be secure,

equivocation is prevented directly. Similarly, the specific ith
log slot in A2M can only store a log entry with the same

sequence number which is also equal to the algorithm instance

number i, so Byzantine nodes cannot produce two different

messages M1 and M2 for a certain algorithm instance with

matching valid attestations. Therefore, A2M can also prevent

equivocation. However, in the counter-based abstraction, a

Byzantine node may still send two different messages for

algorithm instance i with valid certificates, but the messages’

assigned counter value is different. Therefore, this abstraction

does not directly prevent equivocation but can detect equivoca-

tion by comparing the assigned counter value or processing the

received message in the order of counter values. Ultimately,

all the above approaches eliminate Byzantine nodes’ ability to

equivocate without being convicted by others.

Our choices. An important principle goal of TC abstractions

is to provide an interface for a widely applied expression,

while restricting as much as possible to a small Trusted

Computing Base (TCB). Considering the comprehensive ad-

vantages of the counter-based abstraction in complexity and

versatility, we believe this abstraction is most promising, and

a series of recent works [12]–[15] also confirm the trend. In

addition, we can use the counter values instead of the dedicated

message sequence number to determine the message order, and

use a two-phase ordering protocol to reduce the total algorithm

phases. Although more considerations are needed to ensure

that the historical state can be safely passed to the next view

during view change phrase, the above improved approach can

effectively enhance the overall performance.

V. IMPLEMENTATION SCENARIOS OF TC

The TCB of a computer system is the set of all hardware,

firmware, and/or software components, the combination of

which is responsible for enforcing a computer security policy

[28]. In addition to the abstractions, the implementation sce-

narios of TC are also different, resulting in different TCB size

and complexity. Fig.3 illustrates six diverse implementation

scenarios. In this section, we analyze their differences from the

following three levels, i.e., application level, operating system

(OS) level, and hardware level, finally we discuss our choices.

Fig. 3. The TC implementation scenarios: (a) trusted service, (b) trusted
software isolation, (c) hardened OS kernel, (d) trusted VM, (e) trusted VMM,
and (f) security hardware.

117

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

Application level. TC can be implemented as a software

abstraction, and the implementation scenarios could be a

trusted service offered by trusted providers (Fig.3(a)) or a

software-isolated module (Fig.3(b)). The former implementa-

tion approach is similar to the notarization approaches [22],

and the trusted providers can be the third parties such as trusted

organizations or enterprises. However, the big drawback of this

approach lies in its time-consuming remote communication,

resulting in poor system performance. The latter implemen-

tation approach uses software isolation technique to ensure

security. For instance, it can take advantage of programming

language type and memory safety for isolation. Since the

software-isolated processes in TC are run in the same address

space, this approach has better processing capacity than trusted

services.

OS level. Fig.3(c) illustrates that the protected crucial code

can be executed in a hardened OS kernel, and this approach

has been applied in [7]. The virtual layer is a simple method to

achieve fault isolation. As shown in Fig.3(d), TC is separated

from the main application by deploying the TC on a verifiable

mini-OS on top of a virtual machine monitor (VMM). The

TC’s execution results can be trusted if the VMM and the

micro-OS is guaranteed to be secure and reliable. VM-FIT

and SPARE both adopt this implementation approach. In [12],

MinBFT is implemented through many different approaches,

and its evaluation results show that the achieved high perfor-

mance of approach (d) is close to approach (b).

Futhermore, the VMM can also be considered as a microker-

nel. Fig.3(e) illustrates another implementation scenario with

a smaller trusted footprint. Since the TC implementation is put

in the VMM, potential guest OS or application errors above

the VMM cannot affect the TC’s operation. Xen hypervisor

can be utilized to easily implement the virtualization-based

approaches in (d) and (e). To ensure that the TC’s state is kept

during replicas reboot, the state should be promptly stored in

the non-volatile, high-speed storage such as flash memory.

Hardware level. Fig.3(f) describes the implementation with

security hardware. This implementation approach is widely

applied in recent years. [14] implements a TC called Trinc on

a smartcard which is connected to a PC via a USB card reader.

[13], [23] uses the FPGA-based CASH subsystem that prepro-

grams necessary functions on the FPGA. The Trusted Platform

Module (TPM) chips developed by the Trusted Computing

Group [24] are commonly used to protect the authenticity

and confidentiality of data and code. Some versions of TPM

directly support usable monotonic counters, so it is suitable

for implementation of the trusted monotonic counter based

abstraction [12], [25]. Futhermore, some innovative trusted

computing technologies are rapidly developed and widely

applied, including SGX and Trustzone. SGX protects the code

and data in enclaves from being tampered with or monitored

by other applications and high-level system software such as

OS and VMM. Compared with Trustzone, SGX achieves a

smaller TCB that only includes the processor and the enclave,

so its security level is higher.

Our choices. The TC implementation scenarios have differ-

ent trusted footprints. Red boxes in Fig.3 delineate the TCB.

Obviously, TC with smaller TCB is considered to be more

secure and difficult to be attacked. The security hardware

prevents TC from being affected by external attacks and server

operators malicious operations, which ensures the TC security

without physical attacks. It achieves smaller trusted footprint,

so we think the design of TC from hardware level is more

dependable. However, TC is required to be accessed several

times in each algorithm instance, which greatly increases

the latency and may become a potential bottleneck. Some

optimized solutions are considered in practical application,

such as using symmetric encryption instead of asymmetrical

encryption, using fast persistent memory to store state and

possible certificates. Moreover, numerous researches on SGX

technology have been carried out to further improve its se-

curity [26] and reduce the internal overhead. We believe that

SGX is promising and can be widely applied in the future.

VI. GENERAL FRAMEWORK FOR BFT ALGORITHM

DESIGN CHOICES

The TC assistance mechanism has strong applicability and

flexibility, and can be combined with other mechanisms to

design more efficient BFT algorithms based on the hybrid

fault model. Fig.4 illustrates different BFT algorithm design

choices. In this section, we analyze their differences and

features, and compare their performance and resilience.

Fig. 4. BFT Algorithm Design Choices.

BFT paradigms. BFT paradigms can be divided into three

categories: classical BFT (e.g., PBFT), optimized BFT (e.g.,
CheapBFT [23]) and speculative BFT (e.g., Zyzzyva [27]). The

classic BFT can tolerate non-primary faults without requiring

additional operations, so it has high resilience. But it requires

all replicas to participate in the agreement stage, which leads

to poor performance. The speculative BFT allows replicas

to speculatively execute the request and send the result to

the client. It has good performance in the fault-free case

due to the absence of mutual broadcast and its lower phrase

number. However, it simply relies on the client’s feedbacks and

rollback mechanisms to ensure safety and liveness, which is

unpractical in real scenarios since the client can be malicious.

The optimized BFT provides a trade-off between performance

and resilience, and its core idea is to improve performance

in the fault-free case. It distinguishes replicas into active and

118

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

passive replicas, and passive replicas only participate in the

agreement stage when any fault occurs.

TC assistance. We have previously discussed the abstrac-

tions and implementation scenarios of TC. The adoption of

TC (generally implemented by security hardware) removes the

ability of equivocation and reduces the minimum of replicas,

so the system performance can be effectively improved. Also,

TC assistance mechanism (A) can be flexibly combined with

different BFT paradigms. For example, MinBFT is the com-

bination of C and A, REBFT is the combination of O and A,

and MinZyzzyva is the combination of S and A.

Message aggregation. Normally, the message complexity

of BFT algorithms is O(N2) since each replica needs to

broadcast a prepare or commit message to all (active) replicas.

By using message aggregation techniques, such as multi-

signatures (M) and secret sharing (S), message complexity

can be reduced to O(N). Multi-signatures requires larger

message sizes and longer processing time, so its performance

is limited. As for secret sharing, it brings new security risk

since a Byzantine primary can equivocate by using the same

secret for different requests. To address this problem, it also

needs to use TC assistance mechanism to generate and split

secrets, deliver and release shares securely [28].

Communication topology. We can use tree topology (T)

or chain topology (L) with fault detection to further enhance

communication efficiency. Also, we can combine the above

mechanisms and topologies to design various algorithms, such

as OML (e.g., BChain [29]), CMT (e.g., ByzCoin [30]) and

OAST (e.g., FastBFT [28]). These algorithms greatly improve

the performance compared to PBFT, but the resilience of some

algorithms may be compromised. For example, BChain needs

to initiate re-chaining process when non-primary faults occur.

The rational design of BFT algorithms requires comprehen-

sive consideration of performance, scalability, implementation

costs, and resilience. Although it is difficult to achieve the

best in all aspects, we can make some necessary trade-offs

for diverse application scenarios and make full use of the

flexibility of these design choices.

VII. APPLICATIONS IN BLOCKCHAIN

Blockchain is an innovative distributed ledger technology

that establishes trust via running algorithms by all participants

to reach consensus on same order of transactions and serve

a tamper-resistant digital ledger. Because of its attractive

features, blockchain is widely applicable to many business ap-

plications where there is a requirement of trust among multiple

parties. In this section, we will discuss the applications of TC

assistance mechanism and the hybrid fault model in building

trusted blockchain applications and designing efficient consen-

sus algorithms.

A. Building Trusted Applications

Trusted computing is a broad term that refers to tech-

nologies for resolving computer security problems through

hardware enhancements and associated software modifica-

tions. Recently, blockchain and trusted computing are getting

increasingly connected, and their combination is commonly

utilized to build trusted applications. TM-Coin [31] is a trust-

worthy management of TCB measurements for IoT devices,

which enables veriers to securely perform remote attestation of

sensed data received from the devices by leveraging TrustZone

and blockchain. Town Crier [32] is an authenticated data

feed system for smart contracts, serves datagrams with a high

degree of trustworthiness by combining a smart-contract front

end in Ethereum [33] and an SGX-based trusted hardware back

end.

B. Designing Efficient Consensus Algorithms

The application and promotion of blockchain systems are

still limited by the high consumption and low performance

of the underlying consensus algorithms. For example, Bitcoin

uses Proof-of-Work (PoW) mechanism, which consumes a

large amount of global resources but can only process nearly

7 transactions per second (TPS) [34]. Other cryptocurrencies

like PPCoin [35] adopts Proof-of-Stake (PoS) mechanism to

limit the hashing power of each node, but their TPS still cannot

satisfy the requirement of many real-time applications.

TABLE II
COMPARISON OF FIVE ALGORITHMS

PoW PoS PoET PBFT Hybrid fault
model based BFT

Resilience 50% 50% Θ(loglogN
logN

) [37] 33% 50%

TPS <100 <1000 <2000 <2000 <10000
Scalability strong strong strong weak weak

To design more energy-efficient consensus algorithms, TC

assistance mechanism can be leveraged. For instance, Proof-
of-Elapsed-Time (PoET) algorithm [36] utilizes SGX to im-

plement a leader-election lottery system. Instead of using

computational effort to solve cryptographic puzzles, PoET

uses a TEE to generate random wait times. Compared with

PoW and PoS, PoET is more efficient and fair, and it achieves

the goal of “one CPU one vote”. Tab.2 shows the comparison

of the five consensus algorithms.

Hybrid fault model based BFT algorithms are suitable for

application in consortium blockchain. Many platforms [38]

use PBFT to ensure consistency, but it can only tolerant 33%

Byzantine faults. Since the design choices can be diversified,

we can design more efficient and resilient algorithms by refer-

ring to the general framework in Section VI. Performance and

scalability are significant indicators for blockchain consensus

algorithms, and blockchain systems can leverage multi-core

CPUs and trusted hardware to boost these two metrics. For

instance, Hybster [15] is a new hybrid SMR algorithm that

is highly parallelizable and specified formally. The consensus

algorithms based on the hybrid fault model can effectively

improve system resilience from 33% to 50% and reduce

network traffic. As for new trusted computing technologies,

the Windows SDK [39] and programming manual [40] for

SGX have been released. With the development of these

119

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

technologies, the application of TC assistance mechanism and

the hybrid fault model in blockchain has more possibilities.

VIII. CONCLUSION

In this paper, we analyze the design choices and applications

of TC assistance mechanism and BFT algorithms based on

the hybrid fault model. We classify and compare different

TC abstractions and implementation scenarios, and propose

a flexible design framework. By leveraging TC assistance

mechanism, we can guarantee off-chain secure data process-

ing and build reliable blockchain systems. Also, blockchain

consensus algorithms based on this model can achieve 50%

Byzantine fault tolerance and higher transaction throughput

compared with PBFT. However, there are still many open

issues, including the security and performance optimization of

TC, the design of efficient blockchain consensus algorithms

and scalable architectures. Our future work will focus on

the better application of these mechanisms in blockchain,

and designing more efficient systems under future network

architectures, such like Named Data Networking [41].

ACKNOWLEDGMENT

This work has been financially supported by Shenzhen

Key Fundamental Research Projects (No. JCYJ201704121-

50946024, JCYJ20170412151008290).

REFERENCES

[1] Bitcoin. https://bitcoin.org/en/.
[2] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on

bitcoins peer-to-peer network,” USENIX Security Symp. pp. 129-144,
2015.

[3] G. Bracha and S. Toueg, “Asynchronous consensus and broadcast
protocols,” J. of the ACM, vol. 32, pp. 824-840, 1985.

[4] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro, “OS
Diversity for Intrusion Tolerance: Myth or Reality,” Proc. Int’l Conf.
Dependable Systems and Networks, 2011.

[5] F. McKeen, et al. “Innovative instructions and software model for
isolated execution ” Proc. 2nd HASP Wksp. 2013.

[6] ARM. Security technology building a secure system using TrustZone
technology (white paper). ARM Limited, 2009.

[7] M. Correia, N. F. Neves, and P. Verissimo, “How to tolerate half less
one Byzantine nodes in practical distributed systems,” Proc. 23rd Symp.
SRDS, pp. 174-183, 2004.

[8] M. Correia, N. F. Neves, L. C. Lung, and P. Verissimo, “WormIT - A
wormhole-based intrusion-tolerant group communication system,” J. of
Systems and Software, vol. 80, pp. 178-197, 2007.

[9] H. P. Reiser and R. Kapitza, “Hypervisor-based efficient proactive
recovery,” Proc. 26th Symp. SRDS, pp. 83-92, 2007.

[10] T. Distler, R. Kapitza, I. Popov, H. P. Reiser, and W. Schroder, “SPARE:
Replicas on hold,” Proc. 18th NDSS, pp. 407-420, 2011.

[11] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
append-only memory: Making adversaries stick to their word,” Proc.
21st Symp. SOSP, pp. 189-204, 2007.

[12] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo,
“Efficient byzantine fault-tolerance,” IEEE Trans. Comput., vol. 62, pp.
16-30, 2013.

[13] T. Distler, C. Cachin, and R. Kapitza, “Resource-efficient Byzantine fault
tolerance,” IEEE Trans. Comput., vol. 65, pp. 2807-2819, 2016.

[14] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda, “TrInc: Small
trusted hardware for large distributed systems,” Proc. 6th Symp. NSDI,
2009.

[15] J. Behl, T. Distler, and R. Kapitza, “Hybrids on steroids: Sgx-based high
performance bft,” Proc. 12th EuroSys, 2017.

[16] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM Trans. on Programming Languages and Systems, vol. 4, pp.
382-401, 1982.

[17] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J. Wylie,
“Fault-scalable byzantine fault-tolerant services,” In Proc. of SOSP,
2005.

[18] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
1998.

[19] M. Castro, B. Liskov, and M. Pease, “Practical Byzantine fault tolerance
and proactive recovery,” ACM Trans. Comput. Syst,, vol. 20, pp. 398-
461, 2002.

[20] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. of the ACM, vol. 32,
pp. 374-382, 1985.

[21] A. Clement, F. Junqueira, A. Kate, R. Rodrigues, “On the (limited)
power of non-equivocation,” In Proc. of the 2012 ACM Symp. Principles
of distributed computing, pp. 301-308, 2012.

[22] A. R. Yumerefendi and J. S. Chase, “Strong accountability for network
storage,” In Proc. of USENIX FAST, 2007.

[23] R. Kapitza, et al. “CheapBFT: resource-efficient byzantine fault toler-
ance,” In Proc. of the 7th EuroSys, pp. 295-308, 2012.

[24] Trusted Computing Group (TCG). http://www.trustedcomputinggroup.org/.
[25] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “EBAWA:

Efficient Byzantine agreement for wide-area networks,” IEEE 12th Int’l.
Symp. HASE, pp. 10-19, 2010.

[26] S. Matetic, et al. “ROTE: Rollback Protection for Trusted Execution,”
IACR Cryptology ePrint Archive, 2017.

[27] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative Byzantine Fault Tolerance,” Proc. 21st Symp. Operating
Systems Principles, 2007.

[28] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Scalable Byzan-
tine Consensus via Hardware-assisted Secret Sharing,” arXiv preprint
arXiv:1612.04997, 2016.

[29] S. Duan, H. Meling, S. Peisert, and H. Zhang, “BChain: Byzantine
replication with high throughput and embedded reconfiguration,” In Int’l.
Conf. on Principles of Distributed Systems, pp. 91-106, 2014.

[30] E. K. Kogias, et al. “Enhancing Bitcoin security and performance with
strong consistency via collective signing,” In 25th USENIX Security
Symposium, Aug. 2016.

[31] J. Park and K. Kim, “TM-Coin: Trustworthy management of TCB
measurements in IoT,” IEEE Int’l. Conf. PerCom Wksp. pp. 654-659,
2017.

[32] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: an
authenticated data feed for smart contracts,” In Proc. of the 2016 ACM
SIGSAC Conf. Comput. Commun. Security, pp. 270-282, 2016.

[33] Ethereum. https://www.ethereum.org/.
[34] A. Gervais, et al. “On the security and performance of proof of work

blockchains,” In Proc. of the 2016 ACM SIGSAC Conf. Comput.
Commun. Security, pp. 3-16, 2016.

[35] Peercoin whitepaper. https://peercoin.net/whitepaper/.
[36] Hyperledger Sawtooth. https://www.hyperledger.org/projects/sawtooth/.
[37] L. Chen, et al. “On Security Analysis of Proof-of-Elapsed-Time (PoET),”

In Int’l. Symp. on Stabilization, Safety, and Security of Distributed
Systems, pp. 282-297, 2017.

[38] Hyperledger Fabric. https://www.hyperledger.org/projects/fabric/.
[39] Intel: Intel(R) Software Guard Extensions SDK. https://software.intel.

com/en-us/sgx-sdk/.
[40] Intel: Intel(R) Software Guard Extensions Programming Reference,

Revision 2. https://software.intel.com/sites/default/files/managed/48/88
/329298-002.pdf

[41] K. Lei, S. Zhong, F. Zhu, K. Xu and H. Zhang, “A NDN IoT Content
Distribution Model with Network Coding Enhanced Forwarding Strategy
for 5G,” IEEE Trans. Industrial Informatics, vol. 14, pp. 2725-2735,
2017.

120

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

